tion for these five metals was calculated by using Eqn. (7) and was found to be 0.01 cal/g-at. deg. for cerium, praseodymium and terbium, 0.02 for neo pemium and 0.46 for samarium.

TABLE II. Coefficients of ermal Expansion, Atomic Volumes and Compressibilities 1 sed to Calculate C [9]

Rare Earth	Coefficient of Expansion $\alpha \times 10^6 (^{\circ}\text{C}^{-1})$	Atomic Volume (cm³/g-at.)	Compressibility $\beta \times 10^7$ (cm ² /kg)
7' Ce	8, 5	20,69	40.97
151.	6. 79	20,82	32.08
Nel	9.98	20.59	30.02
Sim	10.4	19.95	33.36
tim	33.1	28.98	66.63
Cicl	8.28	19.94	25, 59
171	10.3	19.26	24. 6
1) y	10.0	18.99	25. 52
110	10.7	18. 75	24. 72
Er	12. 3	18. 46	23. 88
T'111	13. 3	18. 13	24. 71

The dilation term is given by

$$C^{d} = \frac{9\alpha^2 \text{ TV}}{\beta}$$
 (8)

where α is the linear coefficient of thermal expansion, V the atomic volume and β the isothermal compressibility. The values of α , V and β which were used in Eqn. (8) to calculate C4 are listed in Table II.

From the Debye theory of the lattice specific heat we have the following expression for C_v^1 :

$$C_v^1 = 3R[K(y) - yK'(y)]$$
 (9)

where R is the gas constant, $y = \theta / T$ (θ is the Debye temper-

at

$$K (y) = \frac{3}{y^3} \int_0^y \frac{y^3 dy}{e^{y} - 1}$$
 (10)

TABLE III. Debye Temperatures Used to Calculate C_v^1 [9]

Part II--Rare Earth Metals and Alloys

Rare Earth	Debye Temperature ^a (°K)	
γ-Ce	138	
Pr	138	
Nd	148	
Sm	148	
Eu	121 ^b	
Gd	155	
Tb	158	
Dy	158	
Но	161	
Er	163	
Tm	167	

a. Based on specific heat data taken from about 15° to 300°K.

b. Calculated by ref. [9] from Lindemann equation.

The integral in Eqn. (10) has been solved, and tables of C_{ν}^{1} vs θ/T may be found in a number of sources* (of these, we have used the tables of Lewis et al. [16a] to determine C_v^1 at 300°K). The Debye temperature used to calculate C₇ are listed in Table III.

After these three contributions to specific heat were calculated, they were added together and subtracted from Cp to give C. The values for the various contributions to the specific heat are summarized in Table IV along with the resultant C_v^e term and the electronic specific heat constant, γ .

^{*} Some of these sources are listed in the compilation by Gschneidner. [9].